首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1618篇
  免费   202篇
  国内免费   375篇
  2023年   33篇
  2022年   38篇
  2021年   44篇
  2020年   59篇
  2019年   77篇
  2018年   72篇
  2017年   74篇
  2016年   59篇
  2015年   59篇
  2014年   66篇
  2013年   103篇
  2012年   81篇
  2011年   94篇
  2010年   83篇
  2009年   101篇
  2008年   95篇
  2007年   106篇
  2006年   111篇
  2005年   82篇
  2004年   67篇
  2003年   62篇
  2002年   57篇
  2001年   53篇
  2000年   60篇
  1999年   36篇
  1998年   45篇
  1997年   43篇
  1996年   39篇
  1995年   28篇
  1994年   23篇
  1993年   26篇
  1992年   30篇
  1991年   21篇
  1990年   26篇
  1989年   24篇
  1988年   13篇
  1987年   16篇
  1986年   16篇
  1985年   7篇
  1984年   14篇
  1983年   2篇
  1982年   12篇
  1981年   9篇
  1980年   6篇
  1979年   8篇
  1978年   2篇
  1977年   2篇
  1973年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有2195条查询结果,搜索用时 31 毫秒
11.
水分利用效率(WUE)是表征陆地碳-水循环耦合关系的重要指标,但其对气候变化响应的高程分异仍不清楚。通过集合经验模态分解(EEMD)去趋势和偏相关方法,以"21世纪海上丝绸之路"沿线省份为研究区,揭示WUE对气候变化的响应及其随高程的分异。研究结果表明:(1)研究区内WUE多年均值由中心向南北递减。不同植被类型的WUE多年均值由高到低依次为:常绿针叶林、混交林、常绿阔叶林、稀树灌木草地、耕地和城市建设用地。(2)51.11%的区域表现出均温与WUE的正相关;而81.46%地区表明温差的扩大会使得WUE增加;有近一半的研究区表明最高温的升高有利于提高WUE,而最低温的作用则相反;有67.99%的区域表明降水增多反而会导致WUE的减少。(3)在大多数土地覆盖类型,日温差和最低温主要与WUE呈正相关,而最高温和降水主要与WUE呈负相关。在常绿针叶林、耕地和城市建设用地,日均温与WUE呈负相关。在其他三种植被类型下则呈正相关。(4)在低海拔地区,均温与WUE呈负相关而在中高海拔地区则转变为正相关关系。而最高温则正好相反。降水与WUE的负相关关系系数随高度的增加而不断加强,而温差和最低温与WUE的正相关关系也随高度的增加而剧烈波动增强。  相似文献   
12.
The UK environmental e-science initiative supports the development and modification of simulation tools used to study radiation damage effects. We discuss the development and modification to the DL_POLY molecular dynamics (MD) code. Using the newly developed tools, we study the effects of radiation damage related to the safe encapsulation of highly radioactive materials, including nuclear waste. We address the possible differences between the radiation damage in the bulk and at the surface of a material, and perform MD simulations of energetic events in zircon structure. We find that in the case of readily amorphizable material, the formation of a stable alternative covalent network reduces the possible effect of the surface on the damaged structure.  相似文献   
13.
Insects are the most important components of the terrestrial fauna associated with carrion because they recycle organic matter back into the ecosystem. They can be classified into four ecological categories comprising: necrophages; parasites and predators of necrophagous species; omnivores, and incidentals. To determine the composition and temporal succession of necrophagous and predator beetles on pig carrion, four experiments, one in each season, were carried out during 2004 in a rural area of Cordoba, central Argentina. Two pigs (Sus scrofa L.), weighing approximately 8 kg each, were used in each of the four experiments. The animals were killed by a sharp blow to the head and immediately placed in an appropriate trap. One pig was placed in the shade and the other in direct sunlight. Beetle fauna were collected daily during the first 4 weeks and thereafter every 2 or 3 days. Five stages of decomposition were observed and a total of 1586 adults and 4309 immatures of Coleoptera belonging to the Staphylinidae, Nitidulidae, Cleridae, Dermestidae, Histeridae, Anthicidae and Trogidae families were collected during the four experiments. The necrophagous community was represented by Dermestes maculates (De Geer), nitidulid species and members of the Trox genus. Staphylinidae, Cleridae and Histeridae species were considered to be the main predators of the necrophagous species.  相似文献   
14.
选择闽江河口鳝鱼滩西北部的纯芦苇湿地为研究对象,基于野外氮负荷增强分解试验,探讨了氮负荷增强对芦苇残体分解及其养分释放的影响。试验设置了4个氮负荷水平,即NL0(无氮负荷处理,0 g N m-2 a-1)、NL1(低氮负荷处理,12.5 g N m-2 a-1)、NL2(中氮负荷处理,25.0 g N m-2 a-1)和NL3(高氮负荷处理,75.0 g N m-2 a-1)。结果表明,不同氮负荷处理下残体的分解速率整体表现为NL2(0.00284 d-1)>NL1(0.00263 d-1)>NL0(0.00257 d-1)>NL3(0.00250 d-1),低氮和中氮负荷总体促进了残体分解,而高氮负荷抑制了残体分解,原因主要与不同处理下残体分解过程中基质质量及pH的明显改变有关。不同氮负荷处理下,残体中的全碳(TC)含量在分解期间均呈不同波动变化特征;全氮(TN)和全磷(TP)含量均在分解初期(0-30 d)骤然降低,之后则呈不同波动变化,其中TN含量呈波动上升变化,而TP含量呈小幅波动变化。残留率是影响不同氮负荷处理下残体分解期间碳(C)、氮(N)和磷(P)净释放的共性因素,而氮负荷增强导致的残体基质质量(C/N、C/P、N/P)和主要环境因子(pH、电导率(EC))改变影响了其释放强度。研究发现,在氮负荷增强背景下残体养分的累积与释放发生了明显改变,闽江河口氮负荷水平的增加整体将抑制芦苇残体中C、N养分的释放,但其在分解中后期(90-240 d)可能对P养分释放具有较为明显的促进作用。  相似文献   
15.
To determine whether latitudinal variation in herbivore impact exists, we examined three major herbivorous insect feeding types (chewers, gallers, and miners) on/in leaves of Japanese beech. Herbivores were collected with litter traps deployed in forests across a latitudinal gradient of 10°. Leaf litter analyses demonstrated that chewing herbivory increased with increasing latitude of collection site. However, the densities of miners and gallers decreased with latitude. To test whether latitudinal variation in herbivore damage occurs in the absence of geographically differentiated environmental cueing (e.g., physical stresses or herbivore damage), we measured both genetically determined constitutive leaf traits and herbivore damage in a common-garden experiment. In this experiment, miner density decreased with latitude, but chewing herbivory did not vary latitudinally. Galler density was higher on trees from native provenances than on trees from unrelated provenances likely because of local adaptations. Leaf mass per unit area (LMA), tannin, and phenolics all decreased with latitude of provenance. The latitudinal variation in one constitutive leaf trait (LMA) best explained latitudinal variation in chewing herbivory. Thus, different mechanisms account for feeding type-specific patterns of latitudinal variation in herbivore damage among different herbivore feeding types.  相似文献   
16.
17.
The use of 13C-NMR for studies of wheat straw decomposition   总被引:1,自引:0,他引:1  
13C-NMR was used to study the field decomposition of surface retained and incorporated wheat straw. Results showed decreasing proportions of straw carbon as carbohydrate and increasing proportions of aromatic compounds during straw decomposition. These changes were greater for the surface retained straw, however greater relative microbial contamination of incorporated straw may have affected results. The cost of 13C-NMR may lessen its role in studies of this nature.  相似文献   
18.
Rice straw decomposition in rice-field soil   总被引:1,自引:0,他引:1  
Rice straw, buried in a rice-field during the dry season decomposed at a rate of 0.0075 day-1. Seventy five percent of the biomass, 70 percent carbon, 50 percent nitrogen and 30 percent phosphorus remained after 139 days of decomposition. Rice straw decomposition furnished 33% N and 8% P of the total nitrogen and phosphorus provided by man.  相似文献   
19.
Abstract: The fecal pellet-plot method has been used extensively for snowshoe hare (Lepus americanus) population studies across the species' range, but potential biases associated with the technique have not been addressed adequately. We studied hare pellet-plots in northern Idaho to quantify pellet decomposition rates across environmental gradients, and conducted feeding trials on captive hares to assess the role of diet on pellet production rates. We found that across our study area pellet numbers tended to be higher on plots with high vegetative cover, which likely was a reflection of hare habitat choice rather than lesser pellet decomposition in such habitat. A pellet decomposition experiment indicated that pellet persistence was negatively related to moisture level, and that pellets produced by hares during summer decomposed more quickly than those from winter. We found that only 19% of fecal pellets collected from plots located across northern Idaho were produced by hares during winter. There was a correlation between pellet numbers from plots that were pre-cleared 1 year earlier and estimated numbers of hares on 6 study areas. A similar correlation was lacking for pellet counts from uncleared plots, implying that hare population estimation via pellet-plot counts should involve plot pre-clearing. In captive studies, juvenile hares produced slightly fewer pellets per day per gram of food ingested than adults, but pellet production was similar across diets comprised of 10 different browse species. We conclude that for our study area the fecal pellet-plot method may be subject to notable pellet decomposition bias, and therefore recommend that use of the method elsewhere across the species' range be preceded by assessment of both the pellet-hare density relationship and pellet decomposition rates across habitats.  相似文献   
20.
Eutrophication is a major threat to freshwater ecosystems worldwide that affects aquatic biota and compromises ecosystem functioning. In this study, we assessed the potential use of leaf decomposition and associated decomposer communities to predict stream eutrophication. Because leaf quality is expected to affect leaf decomposition, we used five leaf species, differing in their initial nitrogen concentration. Leaves of alder, chestnut, plane, oak and eucalyptus were placed in coarse-mesh bags and immersed in six streams along an eutrophication gradient to assess leaf decomposition and the structure of associated decomposer communities. A hump-shaped relationship was established between leaf decomposition and the eutrophication gradient for all leaf species, except for eucalyptus. Invertebrate biomass and density as well as fungal biomass and sporulation were lowest at the extremes of the gradient. Leaf-associated invertebrate and fungal assemblages were mainly structured by stream eutrophication. The percentage of shredders on leaves decreased, whereas the percentage of oligochaeta increased along the eutrophication gradient. The Iberian Biological Monitoring Working Party Index (IBMWP) applied to benthic invertebrates increased from oligotrophic to moderately eutrophic streams and then dropped sharply at highly and hypertrophic streams. Overall, leaf decomposition was a valuable tool to assess changes in stream water quality, and it allowed the discrimination of sites classified by the IBMWP within class I and class IV. Moreover, decomposition of most leaf species responded in a similar way to eutrophication when decomposition was normalized by the quality of leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号